

Hochschule für Technik, Wirtschaft und Kultur Leipzig

Studienordnung Masterstudiengang Informatik

- StudO-INM -

Fassung vom 04.11.2009 auf der Grundlage von §§ 13 Abs. 4, 36 SächsHSG Bestätigt durch Beschluss des Fakultätsrats IMN vom 09.06.2010

Aus Gründen der besseren Lesbarkeit wird auf die gleichzeitige Verwendung männlicher und weiblicher Sprachformen verzichtet. Maskuline Personenbezeichnungen in dieser Ordnung gelten gleichermaßen für Personen weiblichen Geschlechts.

Inhaltsverzeichnis

§ 1	Geltungsbereich	2
	Studienziel	
§ 3	Zugangs- und Zulassungsvoraussetzungen	3
	Aufbau und Inhalt des Studiums	
§ 5	Studienberatung	5
	Schlussbestimmungen	

§ 1 Geltungsbereich

- (1) Diese Studienordnung legt auf der Grundlage der zugehörigen Prüfungsordnung das Studienziel, die Zulassungsvoraussetzungen, den Aufbau und den Inhalt des Masterstudiengangs Informatik (INM) an der Fakultät Informatik, Mathematik und Naturwissenschaften (IMN) der HTWK Leipzig fest.
- (2) Der Verlauf des Studiums ist im **Studienablaufplan** (vgl. **Anlage 1**) ausgewiesen. Er hat insoweit empfehlenden Charakter, als bei seiner Beachtung der Mastergrad innerhalb der Regelstudienzeit von 4 Semestern erreicht werden kann. Der Studienablaufplan wird durch die **Modulbeschreibungen** (vgl. **Anlage 2**) und den Prüfungsplan der Prüfungsordnung für den Masterstudiengang Informatik konkretisiert.
- (3) Ein Teilstudium ist mit reduziertem Inhalt auch über einen verkürzten Zeitraum von maximal 2 Semestern möglich.

§ 2 Studienziel

- (1) Der Studiengang ist eine Ausbildung zum Master auf fundierter theoretischer Basis. Sie zeichnet sich gleichermaßen durch wissenschaftlichen Anspruch und Anwendungsbezogenheit aus. Besonders die selbstständige wissenschaftliche Arbeit der Studenten sichert ein tiefgründiges Verständnis der Zusammenhänge von Resultaten der Theorie. Ziel ist der Erwerb von Kenntnissen und Fähigkeiten, die
- zu anspruchsvoller beruflicher Tätigkeit auf dem Gebiet der Informatik und auf verwandten Gebieten befähigen,
- in besonderem Maße zu einer Tätigkeit in leitender Stellung qualifizieren,
- weltweite Einsetzbarkeit ermöglichen und
- den Weg zu einer weiterführenden Qualifikation in Form einer Promotion im In- und Ausland ebnen.

Die Studieninhalte entsprechen dem aktuellen Stand der Technik und der Wissenschaft. Sie basieren auf dem Prinzip der Einheit von Lehre und Forschung. Die Studenten sollen die Befähigung zu interdisziplinärer Kooperation und zur aktiven Mitgestaltung der wissenschaftlichen Entwicklung ihres Fachgebietes erlangen.

- (2) Die Informatik kommt weltweit in wachsendem Maße in allen Gebieten von Wirtschaft, Technik, Wissenschaft und Verwaltung zur Anwendung. Der Studiengang eröffnet gut ausgebildeten Informatikern national und international ausgezeichnete berufliche Entwicklungschancen, und zwar hauptsächlich
- in Unternehmen, die Software und/oder Hardware herstellen und/oder vertreiben,
- bei Computeranwendern (Industrie, Handel, Banken, Versicherungen),
- im Öffentlichen Dienst,
- in Beratungs- und Dienstleistungsunternehmen,
- in der Lehre und in der Weiterbildung,
- in der Forschung.

Der Absolvent soll in der Lage sein, diese Chancen mit Erfolg wahrzunehmen.

(3) Das Studium wird mit dem Erwerb eines weiteren berufsqualifizierenden Abschlusses "Master of Science", abgekürzt "M.Sc.", beendet.

§ 3 Zugangs- und Zulassungsvoraussetzungen

- (1) Der Masterstudiengang Informatik baut konsekutiv auf dem Bachelorstudiengang Informatik auf. Zugangsvoraussetzung ist ein erster berufsqualifizierender Hochschulabschluss auf dem Gebiet der Informatik bzw. einem anderen mathematisch-naturwissenschaftlichen oder technischen Gebiet mit starkem Informatikbezug und einem hinreichenden Anteil Informatikausbildung, dessen Eignung vom Prüfungsausschuss des Studienganges anerkannt wird. Auch ein anderer graduierter Hochschulabschluss kann vom Prüfungsausschuss als Zugangsvoraussetzung anerkannt werden.
- (2) Die Voraussetzungen für den Masterstudiengang können an einer Hochschule des Inoder Auslands erworben worden sein. Die Nachweise müssen vom Antragsteller in der Regel mit der Bewerbung (Antrag auf Zulassung bzw. Einschreibung) für den Masterstudiengang beigebracht werden.
- (3) Absolventen von Studiengängen, die keine Informatikstudiengänge sind, müssen nachweisen, dass sie im Rahmen ihres ersten berufsbefähigenden Studiums vergleichbare Kompetenzen erworben haben wie die Absolventen des Bachelorstudienganges Informatik der HTWK Leipzig. Die Feststellung erfolgt durch den zuständigen Prüfungsausschuss. Sind diese Kompetenzen nicht ausreichend vorhanden, müssen fehlende Kenntnisse durch entsprechende Brückenkurse oder Module des Bachelorstudienganges Informatik erworben werden, was in der Regel vor Aufnahme in den Masterstudiengang Informatik erfolgen soll.
- (4) Die Zulassung zum Studium bestimmt sich nach den einschlägigen hochschulrechtlichen Bestimmungen, insbesondere nach dem Sächsischen Hochschulgesetz, dem Sächsischen Hochschulzulassungsgesetz und der Sächsischen Studienplatzvergabeverordnung sowie nach der Immatrikulationsordnung und Masterauswahlordnung der HTWK Leipzig.

§ 4 Aufbau und Inhalt des Studiums

- (1) Das Studium wird in der Regel zum Wintersemester aufgenommen.
- (2) Die Studieninhalte werden in Modulen vermittelt (modularer Aufbau). Module bezeichnen einen Verbund zeitlich begrenzter, in sich geschlossener, inhaltlich oder methodisch ausgerichteter Lehrveranstaltungen. Jedes Modul wird mit einer Modulprüfung abgeschlossen, die nach Maßgabe des Prüfungsplans aus einer oder mehreren Prüfungen bestehen kann. Für erfolgreich absolvierte Module werden entsprechend ihrem hierzu erforderlichen Zeitaufwand für
 - a.) die Teilnahme an Lehrveranstaltungen,
 - b.) die Vor- und Nachbereitung von Lehrveranstaltungen,
 - c.) das Selbststudium sowie

d.) die Vorbereitung auf und die Ablegung von Prüfungen

(sog. Arbeitslast oder workload) Punkte nach dem European Credit Transfer and Accumulation System (ECTS-Punkte, Leistungspunkte) vergeben. Ein ECTS-Punkt entspricht für einen durchschnittlich leistungsfähigen Studenten einer Arbeitslast von 30 Zeitstunden.

- (3) Vermittlungsformen in Lehrveranstaltungen können insbesondere Vorlesungen, Übungen, Seminare und Praktika sein. Nach Maßgabe der Modulbeschreibungen können Lehrveranstaltungen auch in einer Fremdsprache abgehalten werden.
- (4) Der erfolgreiche Abschluss des Studiums erfordert den Erwerb von 120 ECTS-Punkten. Nach Maßgabe des Studienablaufplans sind dabei aus den Pflichtmodulen 78, aus den Wahlpflichtmodulen 42 ECTS-Punkte zu erbringen.
- (5) Die Module werden nach
 - a.) Pflichtmodulen, die jeder Student zu belegen hat und
 - b.) **Wahlpflichtmodulen**, unter denen der Student innerhalb des Modulangebots des Studiengangs auswählen kann und in bestimmten Umfang auswählen muss, und
 - c.) **Zusatzmodulen**, die der Student über das Modulangebot des Studiengangs hinaus belegen kann,

unterschieden. Weitere Einzelheiten zu den Modulen ergeben sich aus den Modulbeschreibungen.

- (6) Die Zulassung zu Wahlpflichtmodulen hat der Student auf dem Wege der Einschreibung spätestens bis zum Ende der Einschreibungsfrist im vorherigen Semester zu beantragen, für Studenten im 1. Semester wird eine angemessene Nachfrist festgesetzt. Über die Zulassung entscheidet das Prüfungsamt im Einvernehmen mit dem Studiendekan unter Berücksichtigung kapazitätsbedingter Möglichkeiten. Im Fall der Wahl eines Moduls an einer anderen Fakultät bzw. Einrichtung erfordert eine Zulassung deren Zustimmung. Stellt der Student keinen Antrag, kann ihn das Prüfungsamt von Amts wegen zulassen. Die Zulassung ist unanfechtbar.
- (7) Anzahl und Inhalt der angebotenen Wahlpflichtmodule können verändert werden, wenn die Berücksichtigung des aktuellen wissenschaftlichen Erkenntnisstandes oder eine Verlagerung der Lehr- und Forschungsschwerpunkte dies erfordern. Werden für ein Wahlpflichtmodul nicht mindestens zehn Studenten zugelassen, kann das Wahlpflichtmodul vom Modulangebot gestrichen werden. Auf schriftlichen Antrag kann der Student an Stelle eines Wahlpflichtmoduls für ein Wahlmodul zugelassen werden. Über den Antrag entscheidet der Prüfungsausschuss. Ein Anspruch darauf, dass der Student zu einem bestimmten Wahlpflichtmodul zugelassen oder ihm ein bestimmtes Wahlpflichtmodul angeboten wird, besteht nicht.
- (8) Einige Wahlpflichtmodule mit engen inhaltlichen Beziehungen sind zu Gruppen zusammengefasst und bilden einen Kompetenzbaustein. Wenn ein Student alle Module eines solchen Bausteins absolviert hat, wird auf Antrag im Zeugnis die erworbene Kompetenz bescheinigt - dem Namen des Bausteins entsprechend. Die Belegung aller Module eines Bausteins ist nicht verpflichtend. Auch kann es keinen Rechtsanspruch geben, dass alle Module

eines Bausteins wirklich stattfinden. Dies hängt u. a. vom Einschreibeverhalten der Studenten und von der Belastungssituation der Lehrkräfte ab.

(9) In jedem Kompetenzbaustein ist ein Kernmodul ausgewiesen. Um eine hinreichende Breite der Ausbildung zu sichern, ist jeder Student verpflichtet, mindestens drei Kernmodule zu belegen.

§ 5 Studienberatung

- (1) Die allgemeine Studienberatung erfolgt durch das Dezernat Studienangelegenheiten der HTWK Leipzig. Sie erstreckt sich insbesondere auf Fragen der Studienmöglichkeiten, der Immatrikulation, Exmatrikulation und Beurlaubung sowie auf allgemeine studentische Angelegenheiten.
- (2) Die studienbegleitende fachliche und organisatorische Beratung wird in Verantwortung der Fakultät durchgeführt. Sie umfasst insbesondere Fragen zu Modulinhalten und zum Studienablauf.
- (3) In prüfungsrechtlichen Angelegenheiten, insbesondere zum Vorgehen gegen belastende Entscheidungen der HTWK Leipzig, berät der Justitiar.
- (4) Wer nicht spätestens in der Prüfungsperiode des 2. Semesters wenigstens einen Prüfungserstversuch unternommen hat, muss sich einer Beratung nach Absatz 2 Satz 1 unterziehen.

§ 6 Schlussbestimmungen

- (1) Die Studienordnung des Masterstudiengangs Informatik wurde am 04. November 2009 und 09. Juni 2010 vom Fakultätsrat der Fakultät IMN beschlossen und lag dem Senat in seiner Sitzung am 09. Dezember 2009 zur Stellungnahme vor. Sie tritt am Tage nach der Genehmigung durch das Rektorat¹ in Kraft. Gleichzeitig treten alle vorhergehenden Studienordnungen des Studiengangs INM der HTWK Leipzig außer Kraft.
- (2) Glaubt ein Student, aus der vor dieser Studienordnung geltenden Studienordnung eine für sich günstigere Regelung herleiten zu können, kann er auf schriftlichen Antrag die Anwendung dieser Regelung verlangen. Die Antragstellung ist bis längstens 31. Dezember 2011 möglich.
- (3) Die Studienordnung des Studiengangs INM wird im Internetportal der HTWK Leipzig unter www.htwk-leipzig.de veröffentlicht.

¹ genehmigt durch Beschluss vom 14.12.2010

HTWK Leipzig, FIMN, Studienordnung zur	m Masterstudiengand	i Informatik	, StudO-INM
--	---------------------	--------------	-------------

Anlagen

- 1.) Studienablaufplan
- 2.) Modulhandbuch

Hochschule für Technik, Wirtschaft und Kultur Leipzig

Studienordnung Masterstudiengang Informatik

Anlage 1: Studienablaufplan

Fassung vom 04.11.2009 auf der Grundlage von §§ 13 Abs. 4, 36 SächsHSG Bestätigt durch Beschluss des Fakultätsrats IMN vom 09.06.2010

Der Studienablaufplan informiert, welche Pflichtmodule zu absolvieren sind und welche Wahlpflichtmodule es gibt, wobei nicht jedes Wahlpflichtmodul in jedem Semester angeboten werden kann. Zu jedem Modul werden das Kürzel, der Name und die Bewertung mit ECTS-Punkten angegeben.

Die Module sind bestimmten Semestern zugeordnet: Diese Zuordnung hat empfehlenden Charakter, beachtet man die Empfehlung, ist die Einhaltung der Regelstudienzeit von 4 Semestern garantiert.

TABELLE 1: Masterstudiengang Informatik Regelstudienablauf

Modul-	Modul / Teilmodule	ECTS-Punkte			ECTS-P.	
Kürzel		1.	2.	3.	4.	gesamt
		Sem.	Sem.	Sem.	Sem.	
INM-PPS	Prinzipien von	6				6
	Programmiersprachen					
INM-NSM	Netzwerk- und	6				6
	Systemmanagement					
	Wahlpflichtmodule	18				18
INM-IS	Informationssysteme		7			7
INM-BW	Betriebswirtschaft und		5			5
	Wirtschaftsrecht					
INM-PM	Projektmanagement-		4			4
	Praktikum					
	Wahlpflichtmodule		12			12
INM-OS	Oberseminare		2	2		4
INM-TI	Theoretische Informatik			6		6
INM-P	Projekt			10		10
	Wahlpflichtmodule			12		12
INM-MA	Mastermodul (Masterarbeit,				30	30
	-seminar und -kolloquium)					
	Summe	30	30	30	30	120

TABELLE 2: Masterstudiengang Informatik Wahlpflichtmodule

Modul-Kürzel	1odul-Kürzel Modul	
		Punkte
INMW-AE	Algorithm Engineering	6
INMW-ASIC	ASIC-Entwurf	6
INMW-CC	Cluster Computing	6
INMW-CB	Compilerbau	6
INMW-DBI	Datenbanken-Implementierungstechniken	6
INMW-DBV	Digitale Bildverarbeitung	6
INMW-EAL	Evolutionäre Algorithmen	6
INMW-HGT	Hochgeschwindigkeitsnetz-Technologien	6
INMW-IR	Innovative Rechnerarchitekturen	6
INMW-ITSA	IT-Sicherheit (Aufbaukurs)	6
INMW-KRY	Kryptologie	6
INMW-KIA	Künstliche Intelligenz (Aufbaukurs)	6
INMW-MAM	Mathematische Modellierung	6
INMW-MC	Mikrocontroller-Anwendungen	6
INMW-MPSP	Multiprozessor-Systeme und -Programmierung	6
INMW-ME	Mustererkennung	6
INMW-NMA	Numerische Methoden (Aufbaukurs)	6
INMW-PV	Programmverifikation	6
INMW-ROB	Robotik	6
INMW-SC	Smartcard-Programmierung	6
INMW-SR	Symbolisches Rechnen	6
INMW-TIS	Test integrierter Schaltungen	6
INMW-WRS	Wahrscheinlichkeitsrechnung und Statistik	6

TABELLE 3: "Kernmodule" im Sinne von § 4 Abs. 9 der Studienordnung

Compilerbau
Kryptologie
Innovative Rechnerarchitekturen
Künstliche Intelligenz (Aufbaukurs)
Mikrocontroller-Anwendungen

TABELLE 4: "Kompetenzbausteine" im Sinne von § 4 Abs. 8 der Studienordnung

Kompetenzbaustein	zugeordnete Module
A: Systematische	Compilerbau
Softwareentwicklung	Programmverifikation
3	Algorithm Engineering
B: Kryptologie und	Kryptologie
sichere IT-Systeme	IT-Sicherheit (Aufbaukurs)
-	Smartcard-Programmierung
C: Parallele und verteilte	Innovative Rechnerarchitekturen
Systeme	Multiprozessor-Systeme und -Programmierung
	Cluster Computing
D: Intelligente Systeme	Künstliche Intelligenz (Aufbaukurs)
	Mustererkennung
	Evolutionäre Algorithmen
E: Embedded Systems	Mikrocontroller-Anwendungen
	ASIC-Entwurf
	Test integrierter Schaltungen

Hochschule für Technik, Wirtschaft und Kultur Leipzig

Studienordnung Masterstudiengang Informatik

Anlage 2: Modulhandbuch

Fassung vom 04.11.2009 auf der Grundlage von §§ 13 Abs. 4, 36 SächsHSG Bestätigt durch Beschluss des Fakultätsrats IMN vom 09.06.2010

In diesem Handbuch ist jedes Modul in Tabellenform beschrieben. Insbesondere enthält jede Beschreibung die Einordnung des Moduls, den Arbeitsaufwand, die ECTS-Punkte, eine kurze inhaltliche Beschreibung sowie die Art der Prüfung.

Inhaltsverzeichnis

Teil I: Pflichtmodule

Prinzipien von Programmiersprachen (INM-PPS)	
Netzwerk- und Systemmanagement (INM-NSM)	
Informationssysteme (INM-IS)	
Betriebswirtschaft und Wirtschaftsrecht (INM-BW)	
Projektmanagement-Praktikum (INM-PM)	
Oberseminare (INM-OS)	
Theoretische Informatik (INM-TI)	
Projekt (INM-P)	12
Mastermodul (INM-MA)	13
Teil II: Wahlpflichtmodule	
Algorithm Engineering (INMW-AE)	15
ASIC-Entwurf (INMW-ASIC)	16
Cluster Computing (INMW-CC)	17
Compilerbau (INMW-CB)	18
Datenbanken-Implementierungstechniken (INMW-DBI)	
Digitale Bildverarbeitung (INMW-DBV)	20
Evolutionäre Algorithmen (INMW-EAL)	21
Hochgeschwindigkeitsnetz-Technologien (INMW-HGT)	22
Innovative Rechnerarchitekturen (INMW-IR)	
IT-Sicherheit (Aufbaukurs) (INMW-ITSA)	25
Kryptologie (INMW-KRY)	
Künstliche Intelligenz (Aufbaukurs) (INMW-KIA)	27
Mathematische Modellierung (INMW-MAM)	
Mikrocontroller-Anwendungen (INMW-MC)	
Multiprozessor-Systeme und -Programmierung (INMW-MPSP)	
Mustererkennung (INMW-ME)	
Numerische Methoden (Aufbaukurs) (INMW-NMA)	
Programmverifikation (INMW-PV)	
Robotik (INMW-ROB)	
Smartcard-Programmierung (INMW-SC)	
Symbolisches Rechnen (INMW-SR)	
Test integrierter Schaltungen (INMW-TIS)	
Wahrscheinlichkeitsrechnung und Statistik (INMW-WRS)	38

Teil I

Pflichtmodule

Prinzipien von Programmiersprachen (INM-PPS)

Modulbezeichnung	Prinzipien von Programmiersprachen
Modulkürzel	INM-PPS
Semester	1. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. rer. nat. Johannes Waldmann
verantwortlicher	
Dozent	Prof. Dr. rer. nat. Johannes Waldmann
Sprache	deutsch
Zuordnung zum	Pflichtmodul im Masterstudiengang Informatik (INM),
Curriculum	Pflichtmodul im Masterstudiengang Medieninformatik (MIM)
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 h für Präsenzstudium
	120 h für Selbststudium
ECTS-Punkte	6
Voraussetzungen	Programmierung (Bachelormodul)
Lernziele /	Vermittelt wird Kompetenz zu Programmiersprachen an Hand der
Kompetenzen	zugrundeliegenden Prinzipien.
,	Vorhandene Kenntnisse werden zusammengefasst, systematisiert und
	erweitert. Es wird die Grundlage gelegt für ein selbstständiges Erlernen
	weiterer Sprachen und das Entwerfen anwendungsspezifischer
	Programmiersprachen.
Inhalt	Diskussion verschiedener Design-Möglichkeiten für wesentliche
	Sprachkonstrukte.
	1. Lexik und Syntax
	2. Namen, Bindungen, Sichtbarkeiten
	3. Typen, Polymorphie
	4. Ausdrücke und Anweisungen
	5. Steuerung des Programmablaufs
	6. Unterprogramme
	7. Module, Kapselung
Studien- und	Prüfungsvorleistung: keine
Prüfungsleistungen	Prüfung: Klausur (120 Minuten) oder mündliche Prüfung (ca. 30 Minuten)
Medienformen	Beamer, Tafelanschrieb, Zusatzinformationen und Übungsaufgaben teilweise
	online
Literatur	Sebesta, R.:
	"Concepts of Programming Languages", Addison-Wesley/Pearson, 2003.
	MacLennan, B.J.:
	"Principles of Programming Languages: Design, Evaluation, and Implemen-
	tation", Oxford University Press, 1999.
	Tucker, A.B.; Noonan, R.:
	"Programming Languages: Principles and Paradigms", McGraw-Hill, 2001.
	Scott, M.L.:
	"Programming Language Pragmatics", Morgan Kaufmann, 2000.

Netzwerk- und Systemmanagement (INM-NSM)

Modulbezeichnung	Netzwerk-/System-Management
Modulkürzel	INM-NSM
Semester	1. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. Klaus Hänßgen
verantwortlicher	Tron on made namegen
Dozent	Prof. Dr. Klaus Hänßgen
Sprache	deutsch
Zuordnung zum	Pflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	Wahlpflichtmodul im Masterstudiengang Medieninformatik (MIM)
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 für Präsenzstudium
	120 h für Selbststudium, Projektbearbeitung z.T. in Übungen
ECTS-Punkte	6
Voraussetzungen	Rechnernetze I
Lernziele /	Ziele: Vermittlung von Grundkenntnissen und grundlegenden Fertigkeiten auf
Kompetenzen	dem Gebiet der System- und Netzwerk-Management-Systeme, zu ihren
	Einsatzcharakteristika und -möglichkeiten, zu modernen Entwicklungen auf
	diesem Gebiet
	Fach- und methodische Kompetenzen:
	Aneignung praxisrelevanter Kenntnisse zu einer ausgewählten
	Spezialrichtung
	 Verstehen der Grundlagen und Einsatzcharakteristika von System- Management-Systemen
	Befähigung zur Einschätzung von Anwendungsszenarien für solche
	Systeme Systeme
	Befähigung zur eigenständigen Weiterbildung auf einem Teilgebiet und
	zur eigenständigen Anwendung des erworbenen Wissens in einer
	ausgewählten Spezialrichtung
Inhalt	1. Anforderungen und Funktionalität – Inhalt und Arbeitsweise der einzelnen
	Management-Funktionen
	2. Einsatzvorbereitung für Managementsysteme und Überblick über
	verschiedene Systeme (Aufbau und Arbeitsweise der Systeme
	verschiedener Hersteller)
	3. spezielle Sicherheitsaspekte
	4. Netzwerk- und System-Management-Standards – Protokolle, Tendenzen,
	Anwenderszenarien
Ci li l	praktische Übungen an einem ausgewählten System
Studien- und	Prüfungsvorleistung: keine
Prüfungsleistungen	Prüfung: Projekt (schriftliche Ausarbeitung zu vorgegebenem, spezialisierten Thema mit anschl. Auswertungsgespräch, Bearbeitungsdauer 6 Wochen)
Medienformen	Bildschirm-Präsentation, mit Text synchronisiertes AV-Material live und non-
Medicinonileii	live, Tafelbild, Literatur
Literatur	- FJ. Kauffels, Netzwerk- und Systemmanagement, Datacom (95)
Literatur	- Dokumentation zu Tivoli TME10
	- Dokumentation zu MSM
	- Dokumentation zu HP Openview, CA Unicenter TNG, Transview, u.a.

Informations systeme (INM-IS)

Modulbezeichnung	Informationssysteme
Modulkürzel	INM-IS
Semester	2. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. DrIng. Thomas Kudraß
verantwortlicher	Tion. Dring. Thomas Radials
Dozent	Drof Dr. Ing. Thomas Kudrak
	Prof. DrIng. Thomas Kudraß deutsch
Sprache	
Zuordnung zum	Pflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	Verdenne 2 CWC Construe 4 CWC
Lehrformen / SWS	Vorlesung 3 SWS, Seminar 1 SWS
Arbeitsaufwand	60 h für Präsenzstudium
5070 D. I.	150 h für Selbststudium und praktische Übungen
ECTS-Punkte	7
Voraussetzungen	Datenbanken - Grundlagen (GDB), empfohlen: Web-Datenbanken (WDB),
	Datenbanken-Implementierungstechniken (IDB)
Lernziele /	Vermittlung der wichtigsten Prinzipien von Informationssystemen aus
Kompetenzen	Management-Sicht (prozessorientiert) und aus technischer Sicht. Befähigung
	der Teilnehmer zu Informationssystem-Architekten.
Inhalt	1. Grundlagen von Informationssystemen (Motivation, Anforderungen)
	2. Modellierung von Informationssystemen (Prozesse, Funktionen, Daten,
	Rollen)
	3. Technische Grundlagen verteilter Informationssysteme
	- Client-Server-Architekturen
	- Verteilte Objekte: CORBA, RMI
	- Verteilte Komponenten: Enterprise Java Beans (EJB)
	- Persistenzkonzepte (für Objekte und XML)
	- Service-Orientierte Architekturen (SOA) / Web Services
	- Business Process Management / Workflow Management
	- Integration heterogener Systeme (föderierte Systeme, EAI)
	4. Typen von Informationssystemen aus Anwendungssicht
	- Betriebliche Informationssysteme (ERP, CRM, SCM, MIS)
	- Dokumentenmanagement & Content Management / Digitale Archive
	- Geo-Informationssysteme (GIS)
	- Mobile Informationssysteme (MobIS)
Studien- und	Prüfungsvorleistungen: Beleg
Prüfungsleistungen	Prüfung: Projekt (Bearbeitungszeit 10 Wochen), Klausur (90 Minuten) oder
	mündliche Prüfung (ca. 30 Minuten)
Medienformen	Folien, Tafelbild, Literatur
Literatur	Krcmar, H.: Informationsmanagement. Springer-Verlag, 2005.
	Dostal, W.; Jeckle, M.; Melzer, I.; Zengler, B.; Service-orientierte
	Architekturen mit Web Services. Elsevier 2005.
	Conrad, S.; Hasselbring, W.; Koschel, A,; Tritsch, R.: Enterprise Application
	Integration. Elsevier 2005.
	Tanenbaum, A.; van Steen, M.; Verteilte Systeme, Pearson 2005.
	Bengel, G.: Grundkurs Verteilte Systeme. Vieweg 2004.
	Gadatsch, X.: Grundkurs Geschäftsprozess-Management. Vieweg 2003.
	Höpfner, H.; Türker, C.; König-Ries, B.; Mobile Datenbanken und
	Informationssysteme. dpunkt Verlag 2005.

Betriebswirtschaft und Wirtschaftsrecht (INM-BW)

Modulbezeichnung	Betriebswirtschaft und Wirtschaftsrecht
Modulkürzel	INM-BW
Semester	2. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. Kurt F. Troll (Teil Allg. Betriebswirtschaftslehre)
verantwortlicher	Prof. Dr. jur. Heinz-Christian Knoll (Teil Wirtschaftsrecht)
Dozent (en)	Prof. Dr. Kurt F. Troll (Teil Allg. Betriebswirtschaftslehre)
	Prof. Dr. jur. Heinz-Christian Knoll (Teil Wirtschaftsrecht)
Sprache	deutsch
Zuordnung zum	Pflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	Pflichtmodul im Masterstudiengang Medieninformatik (MIM)
Lehrformen / SWS	Vorlesung 2 SWS BWL und 2 SWS Wirtschaftsrecht insgesamt 4 SWS
Arbeitsaufwand	60 für Präsenzstudium, 90 h für Selbststudium
ECTS-Punkte	5
Voraussetzungen	keine
Lernziele /	Teil Betriebswirtschaftslehre (Prof. Troll)
Kompetenzen	Ziel: Die Teilnehmer eignen sich das heute notwendige (Schnittstellen-)
	Wissen an, um nach Abschluss der Veranstaltung zu verstehen, dass es in den
	Märkten von heute nicht ausreicht, eine technisch perfekte Lösung zu
	erarbeiten. In der komplexen wirtschaftlichen Realität eines modernen
	Betriebes, der als technisch-wirtschaftliches Netzwerk zu begreifen ist, sind
	Kenntnisse der fundamentalen betriebswirtschaftlichen Zusammenhänge auch
	für den primär naturwissenschaftlich/technisch ausgerichteten Manager
	unverzichtbar. Insofern ist diese an den Erfordernissen eines Betriebes
	ausgerichtete Veranstaltung als notwendige Ergänzung zu den technisch
	ausgerichteten Fächer zu sehen. Fachkompetenz: Die Teilnehmer eignen sich die notwendigen fachlichen
	Kenntnisse an, um die betriebswirtschaftlich relevanten Aspekte der
	eigenen Tätigkeit im betrieblichen Kontext zu verstehen und bei ihrer
	sachgerechten Durchführung/Überwachung und Kontrolle mitzuwirken.
	(Dabei liegt der Schwerpunkt im Bereich der strategischen Planung und
	weniger der operativen eigenverantwortlichen Durchführung.)
	Methodenkompetenz: Die Anwendung der Analyse- /Planungs- und
	Kontrollinstrumente im Bereich Betriebswirtschaft wird durch fallweise
	eigene Rechercheaufgaben und bei der Durchführung von beispielhaften
	Internet-Recherchen zu vorgegebenen Aufgaben vermittelt.
	Sozialkompetenz: In gewissen Grenzen kann diese Kompetenz sowohl in der
	Präsenzveranstaltung in seminaristischer Form als auch ggf. durch die
	Präsentation von Arbeitsergebnissen (Kurz-Referate, Internet-Recherche-
	Projekte etc.) geübt werden.
	Teil Wirtschaftsrecht (Prof. Knoll)
	Ziel: Aufbauend auf den Zielen des Teils Betriebswirtschaftslehre wird im
	Bereich Wirtschaftsrecht das notwendigen (Schnittstellen-) Wissen im
	Kontext von Technik, Wirtschaft und Recht vermittelt. Der Teilnehmer ist
	nach Absolvierung der Vorlesung in der Lage, die Zusammenhänge zwischen
	dem Bereich Technik, Wirtschaft und Recht zu verstehen und die Systematik
	auf einzelne Fälle zu übertragen.
	Fachkompetenz: Die Teilnehmer eignen sich in der Veranstaltung und
	während des Selbststudiums die notwendigen fachlichen/inhaltlichen
	Kenntnisse an, um die rechtlich relevanten Aspekte der eigenen Tätigkeit zu
	verstehen. Darüber hinaus wird die Fähigkeit vermittelt, mit juristischen
	Fachleuten professionelle Kommunikation zu betreiben.

	Methodenkompetenz: Die Anwendung von Falllösungstechniken wird durch
	Übungsaufgaben unterlegt (Wirtschaftsrecht, Vertragsmuster).
	Sozialkompetenz: siehe Teil Betriebswirtschaftslehre.
Inhalt	Teil Betriebswirtschaftslehre:
	1. Grundlagen der Betriebswirtschaft (Grundbegriffe / Kennzahlen)
	2. Die funktionale Teilbereiche der Unternehmung
	Beschaffung der Produktionsfaktoren
	 Produktion als Kombinationsprozess
	Marketing als Vermarktungspolitik der erstellten Leistungen
	Finanzierung
	3. Rechnungswesen
	4. Unternehmensführung / Management
	Teil Wirtschaftrecht
	1. Einführung und Grundlagen
	2. Bürgerliches Recht/Vertragsgestaltung
	2.1 Vertragsschluss als gemeinsame Voraussetzung für die Entstehung
	von vertraglichen Ansprüchen
	2.2 Zwingendes und dispositives Gesetzesrecht bei bestimmten
	Vertragstypen
	2.3 Beispiele verschiedener Vertragsmuster
	2.4 Grundzüge des Sachenrechts
	3. Handelsrecht
	3.1. Handelsfirma
	3.2. Hilfspersonen des Kaufmannes
	3.3. Handelsregister und sonstige Rechtscheintatbestände
	3.4. Handelsgeschäfte
	4. Gesellschaftsrecht
	4.1. Allgemeines
	4.2. Recht der Personengesellschaften
	4.3. Recht der Kapitalgesellschaften
Studien- und	Teil Betriebswirtschaftslehre (Prof. Troll)
Prüfungsleistungen	Prüfungsvorleistungen: Belege, Präsentation (fallweise Anfertigung und
	Präsentation eigener Recherchen zu vorgegebenen Fragestellungen als
	Einzel-/Gruppenarbeiten)
	Prüfung: Klausur (120 Minuten)
	Teil Wirtschaftrecht (Prof. Knoll)
	Prüfungsvorleistungen: Belege (Bearbeitung von Praxisfällen und
	Vertragsmustern)
	Prüfung: Klausur (120 Minuten)
Medienformen	Tafel, Overheadprojektor, Datenprojektor (Beamer)
Literatur	Teil Betriebswirtschaftslehre
	Härdler, J. (Hrsg.): "Betriebswirtschaftslehre für Ingenieure", München Wien
	Olfert, K. / Rahn, HJ.: Einf. in die Betriebswirtschaftslehre, Ludwigshafen
	Thommen JP., Achleitner AK.: Allgemeine Betriebswirtschaftslehre
	Teil Wirtschaftsrecht
	Führicht: Wirtschaftsprivatrecht
	Wörlen/Metzler-Müller: Handelsrecht mit Gesellschaftsrecht
	Kraft/Kreuz: "Gesellschaftsrecht"
	(Alle Titelangaben beziehen sich auf die neueste Auflage.)
	1 \

Projektmanagement-Praktikum (INM-PM)

Modulbezeichnung	Projektmanagement-Praktikum
Modulkürzel	INM-PM
Semester	2. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. rer. nat. Karsten Weicker
verantwortlicher	
Dozent	Prof. Dr. rer. nat. Karsten Weicker
Sprache	deutsch
Zuordnung zum	Pflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	
Lehrformen / SWS	Vorlesung/Reflexion 1 SWS, Praktikum 1 SWS
Arbeitsaufwand	30 h für Präsenzstudium
	90 h für Selbststudium/Projektmanagement
ECTS-Punkte	4
Voraussetzungen	erfolgreich abgeschlossenes Softwarepraktikum
Lernziele /	Ziel: Studierende sollen eigenverantwortlich ein Softwareprojekt planen und
Kompetenzen	leiten.
	Fach- und methodischeKompetenzen: Dabei werden explizit die
	Führungskompetenz (Überblick in einem großen Projekt behalten,
	Arbeitspakete definieren, Arbeit verteilen und Verantwortung weitergeben,
	Autorität ausüben, Risiken frühzeitig erkennen und minimieren),
	Kommunikationskompetenz (Gruppentreffen moderieren, einzelne
	Teammitglieder motivieren, Vorstellungen der Projektleitung an alle
	Teammitglieder vermitteln, Kommunikationsstrukturen im Team etablieren)
	und Integrationskompetenz (aus einer Gruppe einzelner Individuen ein Team
	formen, Fähigkeiten und Probleme der einzelnen Teammitglieder erkennen
	und berücksichtigen) geschult.
Inhalt	1. Überblick über die Aufgaben der Projektleitung
21111410	2. Supervision
	Selbstreflexion über den Lernprozess
Studien- und	Prüfungsvorleistung: keine
Prüfungsleistungen	Prüfung: Projekt (studienbegleitende Erstellung eines Lernportfolios,
Tranangsterstangen	Ausgabe des Themas zu Beginn des Moduls, Bearbeitungszeit bis zum Ende
	der Lehrveranstaltung)
Medienformen	Tafelbild, Beamer-Präsentation, Literatur
Literatur	Hindel, B.; Hörmann, K.; Müller, M.; Schmied, J.: Basiswissen Software-
	Projektmanagement, dpunkt, 2006.
	Rainwater, J.H.: Herding Cats: A Primer for Programmers Who Lead
	Programmers, Apress, 2002.
	Kellner, H.: Soziale Kompetenz für Ingenieure, Informatiker und
	Naturwissenschaftler, Hansen, 2006.
	וומנעו אוז שווים וומוושכוו, בטטט.

Oberseminare (INM-OS)

Modulbezeichnung	Oberseminare
Modulkürzel	INM-OS
Semester	2. und 3. Semester des Masterstudienganges Informatik (INM)
Modul-	Professoren der Fakultät
verantwortlicher	
Dozent	Professoren der Fakultät
Sprache	deutsch oder englisch
Zuordnung zum	Pflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	Pflichtmodul im Masterstudiengang Medieninformatik (MIM)
Lehrformen / SWS	Seminar mit Studentenvorträgen und Diskussion, 2 x 2 SWS
Arbeitsaufwand	2 x 30 h = 60 h für Präsenzstudium
	2 x 30 h = 60 h für Vortragsvorbereitung
ECTS-Punkte	4
Voraussetzungen	keine
Lernziele /	Ziel: Die Oberseminare dienen der Schulung der wissenschaftlichen
Kompetenzen	Kommunikationsfähigkeit und der aktiven Auseinandersetzung mit aktueller
	Forschungsliteratur. Sie werden semesterweise mit inhaltlich verschiedener
	Ausrichtung angeboten und jeweils von einem Professor betreut. Jeder
	Masterstudent wählt zwei derartige Seminare aus. In jedem gewählten
	Seminar ist vom Studenten ein Vortrag entsprechend der Thematik des
	Seminars zu halten und anschließend ist das behandelte Thema in der
	Diskussion mit den Kommilitonen und dem für das Seminar verantwortlichen
	Professor zu vertreten. Neben der aktiven eigenen Vortrags- und
	Diskussionsleistung erfährt der Student im Auditorium der Vorträge seiner
	Kommilitonen eine facettenreiche Einführung in ein aktuelles Forschungs-
	bzw. Arbeitsgebiet seiner Studienrichtung.
	Fach- und methodische Kompetenzen:
	Es werden Kompetenzen zur Präsentation wissenschaftlicher Themen in
	Vortragsform und zur wissenschaftlichen Argumentation entwickelt.
	Insbesondere wird Wert auf die Ausbildung rhetorischer Fertigkeiten und die
	adäquate Gestaltung von vortragsbegleitenden Folien/Begleitmaterialien
	gelegt.
Inhalt	themenspezifisch
Studien- und	Prüfungsvorleistung: keine
Prüfungsleistungen	Prüfung: je ein Kolloquium pro Semester (Vortrag mit anschließender
Tranangsterstangen	Diskussion, 60 Minuten)
Medienformen	Folien, Beamer, Tafelbild, Bildschirmpräsentation
Literatur	Meyer zu Bexten, E.; Brück, R.; Moraga, C.: "Der wissenschaftliche
Literatur	Vortrag. Leitfaden für Naturwissenschaftler und Ingenieure", Hanser
	Fachbuch, 2002.
	Ergänzung durch themenspezifische Literatur

Theoretische Informatik (INM-TI)

Modulbezeichnung	Theoretische Informatik
Modulkürzel	INM-TI
Semester	3. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. rer. nat. Uwe Petermann
verantwortliche Dozent	Prof. Dr. rer. nat. U. Petermann
Sprache	deutsch
Zuordnung zum	Pflichtmodul im 3. Semester des Masterstudienganges Informatik (INM)
Curriculum	Filicitinodut ini 3. Semester des masterstadienganges informatik (inim)
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 h für Präsenzstudium
Aibeitsauiwaiiu	120 h für Selbststudium
ECTS-Punkte	6
Voraussetzungen	Grundlagen der Informatik, Softwareentwicklung
Lernziele /	Ziel: Vermittlung grundlegender Konzepte zur Berechenbarkeit und
Kompetenzen	Komplexität (Automaten, Grammatiken, formale Sprachen, Turing-Maschinen und andere Modelle der Berechenbarkeit).
	Den Studierenden werden Grenzen der Berechenbarkeit deutlich gemacht. Mit dem vermittelten Instrumentarium erhalten Sie ein fundiertes Verständnis für die in der Praxis deutlich werdenden Folgerungen aus den theoretischen Grundlagen.
	Die Vorlesung wird ergänzt durch begleitende Übungen.
Inhalt	 Berechenbarkeitsmodelle, insbesondere Automaten, Grammatiken und Turing-Maschinen, und ihre Rolle bei der Untersuchung von Grenzen der Berechenbarkeit. Formale Sprachen als Widerspiegelung von Problemen. Zusammenhang zwischen Ausdrucksstärke der Berechenbarkeitsmodelle und Komplexität der Probleme. Grenzen der Berechenbarkeit, praktische Folgerungen, neuere Entwicklungen (z.B. Quanten-Computing)
Prüfung	Prüfungsvorleistungen: Referat (Vortrag nach vorhergehendem
	Literaturstudium und entsprechenden Ausarbeitungen, 30 Minuten)
	<i>Prüfung</i> : Klausur (120 Minuten) oder mündliche Prüfung (ca. 30 Minuten)
Medienformen	Tafelbild, Projektion, Demonstration von Algorithmen
Literatur	J. E. Hopcroft et al., Einführung in die Automatentheorie, Formale Sprachen
	und Komplexitätstheorie, Pearson Studium, 2002.
	Wegener, Theoretische Informatik, B.G.Teubner. 1993.
	R. Socher, Theoretische Grundlagen d. Informatik, Fachbuchverlag
	Leipzig 2003.
	U. Petermann: Materialien zur Vorlesung Theoretische Informatik.

Projekt (INM-P)

Modulbezeichnung	Projekt
Modulkürzel	INM-P
Semester	3. Semester des Masterstudienganges Informatik (INM)
Modul-	Professoren der Fakultät (Betreuer des Projektes)
verantwortlicher	
Dozent	Professoren der Fakultät (Betreuer des Projektes)
Sprache	deutsch
Zuordnung zum	Pflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	Pflichtmodul im Masterstudiengang Medieninformatik (MIM)
Lehrformen / SWS	selbstständige Projektarbeit
Arbeitsaufwand	300 h
ECTS-Punkte	10
Voraussetzungen	Pflichtmodule des 1. und 2. Fachsemesters
Lernziele /	Ziel: In diesem Modul steht die Entwicklung der Fähigkeit der Studenten zur
Kompetenzen	selbstständigen Bearbeitung komplexer wissenschaftlicher
	Aufgabenstellungen im Mittelpunkt. Die Ausrichtung des Themas kann sowohl
	anwendungsorientiert als auch theorieorientiert sein. Insbesondere bietet
	das Modul die Möglichkeit der Bearbeitung von anspruchsvollen Themen aus
	dem Umfeld von Unternehmen und zur Entwicklung der
	informationstechnischen Infrastruktur der Hochschule. Die Projektarbeit
	erfolgt i.d.R. in Gruppen mit 4 oder mehr Teilnehmern.
	Fach- und methodische Kompetenzen:
	In Verantwortung des betreuenden Professors werden Kompetenzen zur
	Methodik wissenschaftlichen Arbeitens (Umgang mit der Literatur des
	Fachgebiets, Problemanalyse, kreative Arbeitstechniken, Resultatdarstellung)
	und zur erfolgreichen Arbeit in einem Team (Kommunikation, Bewältigung
	von Schnittstellenproblemen) vermittelt.
Inhalt	themenspezifisch
Studien- und	Prüfungsvorleistung: keine
Prüfungsleistungen	Prüfung: Hausarbeit (schriftliche Projektarbeit, Themenausgabe zu Beginn des
	Moduls, Bearbeitungsdauer bis zum Ende der Lehrveranstaltung)
Medienformen	themenspezifisch
Literatur	 Franck, N.; Stary, J.: "Die Technik wissenschaftlichen Arbeitens. Eine
	praktische Anleitung", UTB, Stuttgart, 2005.
	Ergänzung durch themenspezifische Literatur

Mastermodul (INM-MA)

Modulbezeichnung Modulkürzel	Mastermodul (Masterarbeit, –seminar und –kolloquium) INM-MA
Semester	4. Semester des Masterstudienganges Informatik (INM)
Modul-	Professoren der Fakultät (Betreuer der Arbeit)
verantwortlicher	Troicissorem der rakattat (betreder der Arbeit)
Dozent	Professoren der Fakultät (Betreuer der Arbeit)
	deutsch oder englisch
Sprache	•
Zuordnung zum	Pflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	
Lehrformen / SWS	selbstständig zu erstellende Masterarbeit, Masterseminar, Wissenschaftliches
	Kolloquium einschließlich Vorbereitung
Arbeitsaufwand	900 h
ECTS-Punkte	30
Voraussetzungen	Festlegung durch Prüfungsordnung
Lernziele /	Mit der Masterarbeit soll der Student zeigen, dass er in der Lage ist, ein an-
Kompetenzen	spruchsvolles fachspezifisches Problem innerhalb einer vorgegebenen Frist
	durch selbstständige wissenschaftliche Arbeit unter Einbeziehung der
	relevanten Forschungsliteratur zu behandeln und dazu eine schriftliche
	wissenschaftliche Arbeit zu verfassen. Das Thema wird durch einen Professor
	oder einen Praxispartner vorgegeben. Der verantwortliche Betreuer ist in
	jedem Fall ein Professor.
	Im begleitenden Masterseminar wird vom Studenten über Thema, Stand und
	Ergebnisse der Masterarbeit vorgetragen und es findet eine kritische
	Diskussion, getragen von den Betreuern und den beteiligten
	Masterstudenten, statt.
	Im Masterkolloguium soll der Student die Fähigkeit unter Beweis stellen,
	Inhalt, Methodik und Ergebnisse seiner Arbeit objektiv und ansprechend zu
	präsentieren und in der wissenschaftlichen Diskussion zu verteidigen. Er soll
	den wissenschaftlichen Entwicklungsstand seines Fachgebietes kennen und
	seine Arbeit einordnen können.
Inhalt	themenspezifisch
Studien- und	Prüfungsvorleistungen: Vortrag im Masterseminar
Prüfungsleistungen	Prüfung: Schriftliche Masterarbeit (Bearbeitungsdauer 6 Monate),
	Masterkolloquium (ca. 60 Minuten)
, , , , , , , , , , , , , , , , , , ,	Gewichtung und Notenbildung vgl. PrüfO INM §9(1)
Medienformen	themenspezifisch
Literatur	themenspezifisch

Teil II

Wahlpflichtmodule

Algorithm Engineering (INMW-AE)

Modulbezeichnung	Algorithm Engineering
Modulkürzel	INMW-AE
Semester	1. oder 3. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. rer. nat. Karsten Weicker
verantwortlicher	
Dozent	Prof. Dr. rer. nat. Karsten Weicker
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	Masterstudiengang Medieninformatik (MIM)
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 für Präsenzstudium
	120 h für Selbststudium und Projektbearbeitung
ECTS-Punkte	6
Voraussetzungen	Algorithmen und Datenstrukturen
Lernziele /	Die Studenten sollen fortgeschrittene Algorithmen und Datenstrukturen
Kompetenzen	kennen, verstehen und sowohl theoretisch als auch praktisch anwenden
	können. Komplexe Aufgabenstellungen müssen hinsichtlich ihrer
	Anforderungen analysiert werden und geeignete Datenstrukturen entwickelt
	und beurteilt werden. Empirische Methoden müssen bekannt sein und für die
	Untersuchung von Algorithmen angewandt werden. Dadurch sollen als
	Kompetenzen exaktes Arbeiten, reproduzierbares Experimentieren und
	kritisches Arbeiten mit Literatur als Grundlage wissenschaftlicher Tätigkeit
	unterstützt werden.
Inhalt	1. Begriffe und Definitionen
	2. Fortgeschrittene Algorithmen und Datenstrukturen (Prioritäts-
	Warteschlangen, Tries, Treaps, dynamisches Hashing, dynamisches
	Programmieren: Stringmatching, randomisierte Algorithmen,
	Crosscounting, Push-Relable-Algorithmus)
	3. Empirisches Arbeiten
	4. Fallstudien
Prüfung	Prüfungsvorleistungen: Belege (Übungsaufgaben)
	Prüfung: Projekt (Bearbeitungszeit ca. 10 Wochen), Klausur (90 Minuten) oder
	mündliche Prüfung (ca. 30 Minuten)
Medienformen	Tafelbild, Beamer-Präsentation, Literatur
Literatur	Ottmann, T.; Widmayer, P.: Algorithmen und Datenstrukturen,
	4. Auflage, Spektrum, 2002.
	Cormen, T. H.; Leiserson, C. E.; Rivest, R.; Stein, C.: Algorithmen -
	Eine Einführung, Oldenbourg, 2004.

ASIC-Entwurf (INMW-ASIC)

Modulbezeichnung	ASIC-Entwurf
Modulkürzel	INMW-ASIC
Semester	2. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. rer. nat. Heinrich Krämer
verantwortlicher	
Dozent	Prof. Dr. rer. nat. Heinrich Krämer
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 für Präsenzstudium
	120 h für Selbststudium
ECTS-Punkte	6
Voraussetzungen	Hardware-Entwurftechniken
Lernziele /	Vermittlung der prinzipiellen technologischen Grundlagen und der
Kompetenzen	Arbeitweise von CMOS-Schaltungen.
	Übersicht über die Arbeitschritte und Verfahren bei der Realisierung von
	Semikunden-ICs mit Hilfe von Standard-, Makrozell-Entwurfssystemen.
	Damit wird der Student auch durch praktische Übungen in die Lage versetzt,
	ein Semikunden-IC zu entwickeln.
Inhalt	Aufbau und Arbeitweise eines CMOS-Transistors
	CMOS-Schaltungstechniken
	Standardzellsysteme
	Makrozellgeneratoren
	Floorplanning
	Plazierungsverfahren
	Verdrahtungsverfahren (Global, Detailliert, Power, Takt)
	Kompaktierung
	Verifikation
Studien- und	Prüfungsvorleistung: keine
Prüfungsleistungen	Prüfung: mündlich (ca. 30 Minuten)
Medienformen	Beamer, Tafelanschrieb, Literatur
Literatur	Herrmann G. Müller D.: ASIC-Entwurf und Test
	Carl Hanser, 2004
	Kemper A., Mayer M.: Entwurf von Semicustom Schaltungen
	Springer Verlag, 1989
	Taur Y., Ning T. H.: Fundamentals of Modern VLSI Devices
	Cambridge Univ. Press, 1998

Cluster Computing (INMW-CC)

Modulbezeichnung	Cluster Computing
Modulkürzel	INMW-CC
Semester	2. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. rer. nat. Klaus Hering
verantwortlicher	
Dozent	Prof. Dr. rer. nat. Klaus Hering
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	
Lehrformen / SWS	Vorlesung 2 SWS , Übung 2 SWS
Arbeitsaufwand	60 h für Präsenzstudium
	90 h für Programmieraufgaben
	30 h für Selbststudium
ECTS-Punkte	6
Voraussetzungen	grundlegende Kenntnisse der Parallelverarbeitung
Lernziele /	Ziel: Die Studenten sollen in die Besonderheiten des Cluster Computing
Kompetenzen	innerhalb des Gebietes Parallel and Distributed Computing eingeführt und in
	die Lage versetzt werden, unter Verwendung ausgewählter
	Entwicklungswerkzeuge selbst Cluster-Anwendungen zu erstellen. Dazu wird
	die Vorlesung durch Übungen in Zweiergruppen unterstützt (derzeit
	vorgesehen: Programmierung unter MPI)
Inhalt	1. Einführung Einordnung in das Gebiet <i>Parallel and Distributed Computing</i> , Geschichte, Cluster-Kategorien
	2. Ausgewählte Architekturaspekte Cluster-Design, Cluster-Dienste, Administration, Verbindungstechnologien
	3. Cluster-Software
	Übersicht, Identifikation wesentlicher Funktionalitäten 4. Projekte
	Parallel wird in die den Übungen zugrunde liegende Programmierumgebung eingeführt.
Studien- und	Prüfungsvorleistung: Referat, Projekte (Computerprogramme)
Prüfungsleistungen	Prüfung: mündliche Prüfung (einschl. Projektpräsentation, ca. 30 Minuten)
Medienformen	Beamerpräsentation, Bildschirmdemonstration, ergänzendes Tafelbild, Literatur, Lernplattform LIPS
Literatur	• Bauke, H.; Mertens, S.: "Cluster Computing", Springer, Berlin, 2005.
	• Gropp, W.; Lusk, E.; Sterling, Th.L. (Eds.): "Beowulf Cluster Computing with Linux", MIT Press, 2003.
	• Sterling, Th. (Ed.): "Beowulf Cluster Computing with Windows (Scientific and Engineering Computation)", MIT Press, 2001.
	• Rauber, Th.; Rünger, G.: "Parallele und verteilte Programmierung", Springer, Berlin, 2000.
	• Iftode, L.; Rangarajan, M. (Eds.): "IEEE Distributed Systems Online: Cluster Computing", http://dsonline.computer.org/portal/site/dsonline/index.jsp , IEEE, 2006.

Compilerbau (INMW-CB)

Modulbezeichnung	Compilerbau
Modulkürzel	INMW-CB
Semester	1., 2. oder 3. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. rer. nat. Johannes Waldmann
verantwortlicher	
Dozent	Prof. Dr. rer. nat. Johannes Waldmann
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 h für Präsenzstudium
	120 h für Selbststudium
ECTS-Punkte	6
Voraussetzungen	Prinzipien von Programmiersprachen (Mastermodul),
	Programmierung,
	Automaten und formale Sprachen (Bachelormodule)
Lernziele /	Die Studenten sollen Modelle, Methoden und Werkzeuge zur semantikgetreuen
Kompetenzen	Übersetzung zwischen verschiedenen Programmiersprachen kennen und
	anwenden lernen.
Inhalt	1. Lexik (reguläre Ausdrücke, endliche Automaten)
	2. Syntax (kontextfreie Grammatiken, Kellerautomaten)
	3. abstrakte Maschinen (Kellermaschinen, Registermaschinen)
	4. Übersetzung von Ausdrücken und Anweisungen
	5. Baumtransformationen, Attributgrammatiken
	6. Typprüfungen
	7. Zwischencode-Erzeugung
	8. Registervergabe
	9. Optimierungen
Studien- und	Prüfungsvorleistung: keine
Prüfungsleistungen	Prüfung: Klausur (120 Minuten) oder mündliche Prüfung (ca. 30 Minuten)
Medienformen	Beamer, Tafelanschrieb, Zusatzinformationen und Übungsaufgaben teilweise
	online
Literatur	Dick Grune: Modern Compiler Design, Wiley & Sons, 2003,
	Andrew W. Appel: Modern Compiler Implementation in Java, Cambridge Univ.
	Press, 1998,
	M.L. Scott: Programming Language Pragmatics, Morgan Kaufmann, 2000.
	Weitere Literatur wird in der Lehrveranstaltung genannt

Datenbanken-Implementierungstechniken (INMW-DBI)

Modulbezeichnung	Datenbanken-Implementierungstechniken
Modulkürzel	INMW-DBI
Semester	1. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. DrIng. Thomas Kudraß
verantwortlicher	
Dozent	Prof. DrIng. Thomas Kudraß
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	
Lehrformen / SWS	Vorlesung 2 SWS, Seminar 2 SWS
Arbeitsaufwand	60 für Präsenzstudium
	90 h für Selbststudium
ECTS-Punkte	6
Voraussetzungen	Datenbanken - Grundlagen (GDB)
Lernziele /	Verständnis der grundlegenden Mechanismen von Datenbanksystemen und
Kompetenzen	deren Implementierungstechniken.
	Der Schwerpunkt liegt in der Vermittlung von Kenntnissen und praktischen
	Fähigkeiten, die bei der Administration von Datenbanken und bei
	Optimierung und Tuning von Datenbankanwendungen benötigt werden.
	Hierbei wird das DBMS Oracle näher vorgestellt.
Inhalt	1. Speicherverwaltung: Platten und Dateien
	2. Dateiorganisation und Zugriffsstrukturen
	3. Hashbasierte und baumbasierte Indexverfahren
	4. Anfrageverarbeitung und -optimierung
	5. Physischer Datenbankentwurf und Datenbank-Tuning
	6. Synchronisation im Mehrbenutzerbetrieb
	7. Recovery in Datenbanken
	8. Data Warehousing
	9. Verteilte Datenbanken
C. I.	10. Architektur eines DBMS
Studien- und	Prüfungsvorleistungen: Referat
Prüfungsleistungen	Prüfung: Klausur (120 Minuten)
Medienformen	Folien, Tafelbild, Literatur
Literatur	Ramakrishnan, K.; Gehrke, J.: Database Systems. McGraw-Hill 1999.
	Saake, G.; Heuer, A.: Datenbanken Implementierungstechniken, Mitp Verlag
	2005.
	Härder, T.; Rahm, E.: Datenbanksysteme, Konzepte und Techniken der
	Implementierung. Springer-Verlag, 1999.

Digitale Bildverarbeitung (INMW-DBV)

Modulbezeichnung	Digitale Bildverarbeitung
Modulkürzel	INMW-DBV
Semester	2. Semester der Masterstudiengänge Informatik (INM)
Modul-	Prof. Dr. rer. nat. habil. Karl-Udo Jahn
verantwortlicher	Tion. Dr. Ter. Hat. Habit. Kait-oud Sailii
Dozent	Prof. Dr. rer. nat. habil. Karl-Udo Jahn
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	Pflichtmodul im Masterstudiengang Medieninformatik (MIM)
curreatum	Wahlpflichtmodul im Masterstudiengang Maschinenbau
Lehrformen / SWS	Vorlesung 2 SWS, Seminar und Übungen am Computer 2 SWS
Arbeitsaufwand	60 für Präsenzstudium
Albertsaarwana	120 h für Selbststudium und Projektbearbeitung
ECTS-Punkte	6
Voraussetzungen	Informatik-Grundlagen
Lernziele /	Die Studierenden sollen in die Lage versetzt werden, in der Praxis auftretende
Kompetenzen	Problemstellungen der Bildverarbeitung zu verstehen, vorhandene Verfahren
Kompetenzen	zu deren Lösung zu beurteilen bzw. selbst geeignete Methoden der
	Problemlösung zu entwerfen und programmtechnisch umzusetzen. Sie können
	mit einem professionellen Bildverarbeitungssystem umgehen (in den
	Übungen wird die Image Processing Toolbox von MATLAB benutzt) und dies
	zur Problemlösung einsetzen.
Inhalt	1. Grundbegriffe
	Bildabtastung und Digitalisierung, Bilddarstellung, Bildcodierung, Farben
	und Pseudofarben, statistische Merkmale
	2. Bildverarbeitung
	Arithmetische und logische Bildoperationen, Segmentierung, lineare und
	nichtlineare Filter, morphologische Operationen, Bildrestauration,
	Operationen im Frequenzbereich, Abtasttheorem und Faltungssatz
	3. Datenstrukturen für Bilder, Bildtransformationen
	Lauflängencodierung, Richtungscodes, statistische Codierungen;
	Transformation von Rasterbildern; Bilddatenformate
Studien- und	Prüfungsvorleistungen: Projekte (erfolgreiche Bearbeitung zweier Projekte)
Prüfungsleistungen	Prüfung: Klausur (120 Minuten) oder mündliche Prüfung (ca. 30 Minuten)
Medienformen	Tafelbild, Folien, Bildschirm, Literatur
Literatur	Acharya, T. und A. K. Ray: Image Processing. Wiley 2005
	Burger, W. und M. J. Burge: Digitale Bildverarbeitung. Springer 2006
	Gonzalez, R. C. und R. E. Woods: Digital Image Processing. Prentice Hall 2007
	Gonzalez, R. C., Woods, R. E. und St. Eddins: Digital Image Processing using
	Matlab. Pearson Higher Education 2003
	Jähne, B.: Digitale Bildverarbeitung. Springer 2005
	Nischwitz, A. und P. Haberäcker: Computergrafik und Bildverarbei-tung.
	Vieweg-Verlag 2004
	Tönnies, K. D.: Grundlagen der Bildverarbeitung. Pearson Studium 2005

Evolutionäre Algorithmen (INMW-EAL)

Modulbezeichnung	Evolutionäre Algorithmen
Modulkürzel	INMW-EAL
Semester	2. Semester des Masterstudienganges Informatik
Modul-	Prof. Dr. rer. nat. Karsten Weicker
verantwortlicher	
Dozent	Prof. Dr. rer. nat. Karsten Weicker
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	Wahlpflichtmodul im Masterstudiengang Medieninformatik (MIM)
Lehrformen	Vorlesung 2 SWS / Übung 2 SWS
	Projektbearbeitung z.T. im Rahmen der Übungen
Arbeitsaufwand	60 für Präsenzstudium
	120 h für Selbststudium und Projektbearbeitung
ECTS-Punkte	6
Voraussetzungen	Minimalkenntnisse in Wahrscheinlichkeitsrechnung und Statistik
Lernziele /	Die Studenten sollen das grundsätzliche Schema und die Standardalgorithmen
Kompetenzen	der evolutionären Algorithmen kennen. Ferner soll die Suchdynamik der
	Algorithmen im Detail verstanden werden. Dieses Wissen soll beim Entwurf
	neuer evolutionärer Algorithmen angewandt werden. Insbesondere bei der
	Untersuchung der Arbeitsweise eines neuen Algorithmus muss die Auswirkung
	der theoretischen Ergebnisse in Zusammenhang mit den experimentellen
	Daten gesetzt werden. Auf dieser Basis müssen evolutionäre Algorithmen auf
	einzelnen Optimierungsproblemen beurteilt werden.
Inhalt	1. Einführung (Optimierung, evolutionäre Algorithmen)
	2. Prinzipien evolutionärer Algorithmen
	3. Standardalgorithmen
	4. Entwurf evolutionärer Algorithmen
	5. Besondere Anforderungen (Randbedingungen, Mehrzieloptimierung,
	verrauschte Bewertung, zeitabhängige Optimierung, zeitintensive
	Bewertung)
Studien- und	Prüfungsvorleistung: studienbegleitende Präsentation
Prüfungsleistungen	Prüfung: studienbegleitendes Projekt (Bearbeitungszeit ca. 10 Wochen),
	Klausur (90 Minuten) oder mündliche Prüfung (30 Minuten)
Medienformen	Tafelbild, Beamer-Präsentation, Animationen, Literatur
Literatur	Weicker, K.: Evolutionäre Algorithmen, Teubner, 2002.

Hochgeschwindigkeitsnetz-Technologien (INMW-HGT)

Modulbezeichnung Modulkürzel	Hochgeschwindigkeitsnetz-Technologien INMW-HGT
Semester	2. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. Klaus Hänßgen
verantwortlicher	Tion. Dr. Klaus Hallisyell
Dozent	Prof. Dr. Klaus Hänßgen
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM),
Curriculum	Wahlpflichtmodul im Masterstudiengang Medieninformatik (MIM)
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 für Präsenzstudium
Albertsaulwalla	120 h für Selbststudium, Projektbearbeitung z.T. in Übungen
ECTS-Punkte	6
Voraussetzungen	Rechnernetze I
Lernziele /	Ziele: Vermittlung von Grundkenntnissen auf dem Gebiet der synchronen
Kompetenzen	Übertragungstechnologien bei hohen Geschwindigkeiten, zu ihren
Kompetenzen	Einsatzcharakteristika und -möglichkeiten, zu modernen Entwicklungen auf
	diesem Gebiet
	Fach- und methodische Kompetenzen:
	Aneignung praxisrelevanter Kenntnisse zu einer ausgewählten
	Spezialrichtung
	Verstehen der Grundlagen und Einsatzcharakteristika von
	Hochgeschwindigkeitsnetz-Technologien
	Befähigung zur Einschätzung von Anwendungsszenarien für solche
	Technologien
	Befähigung zur eigenständigen Weiterbildung auf einem Teilgebiet und
	zur eigenständigen Anwendung des erworbenen Wissens in einer
	ausgewählten Spezialrichtung
Inhalt	1. Gegenwärtige Situation bei Kommunikation auf
	Hochgeschwindigkeitsnetzen
	2. alternative Möglichkeiten in Hochgeschwindigkeitsnetzen
	3. Technologische Prinzipien am Beispiel von ATM – Schichtenmodell, QoS 4. Switch-Architekturen
	5. Gigabit-Ethernet
	6. Wavelength Division Multiplexing
	7. UMTS
	8. Auswertung von regionalen und internationalen Projekten
	praktische Übungen an einem ausgewählten System
Studien- und	Prüfungsvorleistung: keine
Prüfungsleistungen	Prüfung: Projekt (schriftliche Ausarbeitung zu vorgegebenem, spezialisierten
i rarangsterstangen	Thema mit anschl. Auswertungsgespräch, Bearbeitungsdauer 6 Wochen)
Medienformen	Bildschirm-Präsentation, mit Text synchronisiertes AV-Material live und non-
	live, Tafelbild, Literatur
Literatur	Kyas: ATM-Netzwerke, Datacom (95)
	de Prycker: Asysnchronous Transfer Modus, Prentice Hall (93)
	Partridge: Gigabit Networking, Addison Wesley (94)
	Schill et al.: ATM-Netze in der Praxis, Addison Wesley (97)
	Jäger: Breitbandkommunikation, ATM, DQDB, FrameRelay, Addision Wesley (96)
	Hein et al.: ATM, Thomson (96)

Händel et al.: ATM Networks: Conepts, Protocols, Applications, Addison Wesley
(94)
Internet: White Papers, IEEE, ATM-Forum

Innovative Rechnerarchitekturen (INMW-IR)

Modulbezeichnung	Innovative Rechnerarchitekturen
Modulkürzel	INMW-IR
Semester	2. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. rer. nat. Klaus Hering
verantwortlicher	Puet Du van met Vlava Harina
Dozent	Prof. Dr. rer. nat. Klaus Hering deutsch
Sprache	
Zuordnung zum Curriculum	Wahlpflichtmodul im Masterstudiengang Informatik (INM) Wahlpflichtmodul im Masterstudiengang Medieninformatik (MIM)
	3 3 7
Lehrformen / SWS Arbeitsaufwand	Vorlesung 2 SWS , Übung 2 SWS
Arbeitsaurwanu	60 h für Präsenzstudium, 40 h für Vortragsvorbereitung 80 h für Selbststudium
ECTS-Punkte	6
Voraussetzungen	grundlegende Kenntnisse der Rechnerarchitektur und der Graphentheorie
Lernziele / Kompetenzen	 Ziel: Entwicklungslinien auf dem Gebiet der Rechnerarchitektur werden insbesondere unter dem Blickwinkel von Parallelitäts-, Lokalitäts- und Komplexitätsaspekten betrachtet. Unkonventionelles kritisches Denken in Richtung möglicher Entwicklungen soll angeregt werden. Die Studenten setzen sich mit aktuellen Forschungsbeiträgen auseinander und tragen zu einem ausgewählten Gebiet vor. In den Übungen werden auf graphentheoretischer Grundlage Eigenschaften von Verbindungsstrukturen behandelt. Fach- und methodische Kompetenzen: Verständnis des Potenzials neuer Entwicklungen auf dem Gebiet der Rechnerarchitektur Algorithmisches Denken über abstrakten Strukturen Kompetenz in wissenschaftlicher Recherche, Diskussion und Präsentation
Inhalt	1. Einführung: Rechnerarchitekturbegriff, Klassifikationen, evolutionäre Aspekte 2. VLSI-Design: Design-Prozess, Entwurfsstile, Deep Submicron Processes, Verifikation/Test 3. Mikroarchitektur: Entwicklungstendenzen, Aspekte der Pipelinegestaltung 4. Parallelrechner: Organisationsprinzipien, Beispiele aus der "TOP 500"-Supercomputerliste 5. Grid Computing: Grid-Architektur, ausgewählte Projekte 6. Cellular Computing: Zelluläre Modelle, Beispielszenarien 7. DNA-Computing: Hintergrund, biomolekularer Elementarcomputer
Studien- und	Prüfungsvorleistungen: Referat (Vortrag)
Prüfungsleistungen	Prüfungsleistungen: mündlich (15 Minuten)
Medienformen	Beamerpräsentation, ergänzendes Tafelbild, Literatur, Lernplattform LIPS
Literatur	 Märtin, Ch.: "Rechnerarchitekturen – CPUs, Systeme, Software-Schnittstellen", Fachbuchverlag Leipzig (im Carl Hanser Verlag), 2001. Foster, I.; Kesselman, C.; Tuecke, S.: "The Anatomy of the Grid – Enabling Scalable Virtual Organizations", International Journal of Supercomputing Applications, 15(3), 2001. Benenson, Y. et al.: "Programmable and Autonomous Computing Machine Made of Biomolecules", Nature Vol. 414, pp. 430-434, 2001.

IT-Sicherheit (Aufbaukurs) (INMW-ITSA)

Modulbezeichnung	IT-Sicherheit (Aufbaukurs)
Modulkürzel	INMW-ITSA
Semester	3. Semester des Masterstudienganges Informatik
Modul-	Prof. Dr. rer. nat. Uwe Petermann
verantwortlicher	
Dozent	Prof. Dr. rer. nat. Uwe Petermann
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	Pflichtmodul im Masterstudiengang Medieninformatik (MIM)
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 h für Präsenzstudium
	120 h für Selbststudium und Projektbearbeitung
ECTS-Punkte	6
Voraussetzungen	IT-Sicherheit Grundkurs, Hard- und Software von Rechnern und Netzen,
	Softwareentwicklung
Lernziele /	Ziel: Vermittlung fortgeschrittener Methoden zur systematischen Entwicklung
Kompetenzen	von Sicherheitslösungen für Informatik-Systeme.
	Vorlesung wird ergänzt durch begleitende praktische Übungen.
	Fach- und methodische Kompetenzen:
	Aneignung fortgeschrittener praktischer Fähigkeiten und Fertigkeiten zur
	Bedrohungsanalyse, Konzeption und Durchführung von Maßnahmen zur
	Gewährleistung der Sicherheit in Informatiksystemen.
Inhalt	1. Methode der Security-Patterns zur systematischen Entwicklung von Sicherheitskonzepten.
	2. Umsetzung von Sicherheitskonzepten mit Mitteln der Hard- und Software sowie organisatorischer Maßnahmen.
	3. Vertiefung von Kenntnissen zu rechtlichen Belangen der IT-Sicherheit.
	4. Praktische Übungen zur Realisierung von Maßnahmen der Sicherheit in
	einem Labor.
Prüfung	Prüfungsvorleistungen: Belege (Übungsaufgaben), Experimente, Referat
	(Vortrag)
	Prüfung: Projekt (Bearbeitungszeit 6 Wochen)
Medienformen	Tafelbild, Projektion, Demonstration der Hard- und Software, Literatur
Literatur	Schumacher et al.: The Hacker Contest – Security Patterns.
	Springer-Verlag Berlin Heidelberg 2003.
	A. J. Menezes et al.: Handbook of Applied Cryptography. 1997.
	R. J. Anderson: Security Engineering. Wiley Comp. Publ. 2001.
	Petermann, U.: Materialien zur Vorlesung IT-Sicherheit, 2005.

Kryptologie (INMW-KRY)

Modulbezeichnung	Kryptologie
Modulkürzel	INMW-KRY
Semester	2. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. rer. nat. habil. Karl-Udo Jahn
verantwortlicher	Tron. Dr. Tel. Hat. Hat. Sub Sum
Dozent	Prof. Dr. rer. nat. habil. Karl-Udo Jahn
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul in den Masterstudiengängen Informatik (INM) und
Curriculum	Angewandte Mathematik (AMM)
	Pflichtmodul im Masterstudiengang Medieninformatik (MIM)
Lehrformen / SWS	Vorlesung 2 SWS, Seminar und Übungen am Computer 2 SWS
Arbeitsaufwand	60 h für Präsenzstudium
	120 h für Selbststudium und Projektbearbeitung
ECTS-Punkte	6
Voraussetzungen	Informatik-Grundlagen
Lernziele /	Die Studierenden sollen gängige Verschlüsselungsverfahren kennen und
Kompetenzen	beurteilen lernen. Sie sollen in die Lage versetzt werden, diese anzuwenden
	und bei Bedarf zu modifieren. Weiterhin sollen die Verfahren
	programmtechnisch umgesetzt werden können, wozu Programmierübungen in
	Java unter Benutzung der Java Cryptography Extension JCE und in Aribas
	beitragen sollen.
Inhalt	1. Informationssicherheit und Kryptologie, Kryptosysteme, Chiffrierung und
	Dechiffrierung, Schlüsselraum, Integrität und Authentizität
	2. Verschiebechiffren, monoalphabetische und polyalphabetische
	Chiffrierungen, Block- und Stromchiffrierungen, Verkettungen von
	Chiffrierungen, perfekte Sicherheit, DES, IDEA und AES
	3. Einwegfunktionen und kryptographische Hash-Funktionen, öffentliche und
	private Schlüssel, Primzahlgenerierung und Primzahltests, RSA-, ElGamal-,
	Rabin- und Fiat-Shamir-Verfahren, Diffie-Hellman-Protokoll, digitale Unterschrift
	4. Verteilung und Verwaltung geheimer und öffentlicher Schlüssel, Trustmodelle, Zertifikate, public-key-Infrastrukturen
Studien- und	Prüfungsvorleistungen: Projekte (erfolgreiche Bearbeitung zweier Projekte)
Prüfungsleistungen	Prüfung: Klausur (120 Minuten) oder mündliche Prüfung (ca. 30 Minuten)
Medienformen	Tafelbild, Folien, Bildschirm, Literatur
Literatur	Eckert, C.: IT-Sicherheit. Oldenbourg 2008
Literatur	Ferguson, N. and B. Schneier: Practical Cryptography. Wiley 2003
	Hook, D.: Cryptography with Java. Wiley Publishing 2005
	Menezes, A. J., van Oorschot, P. C. and S. A. Vanstone: Handbook of applied
	cryptography. CRC Press 1997
	Schäfer, G.: Netzsicherheit. dpunkt.verlag 2003
	Schmeh, K.: Kryptografie. Verfahren, Protokolle, Infrastrukturen.
	dpunkt.verlag 2007
	Schneier, B.: Angewandte Kryptographie. Pearson Studium 2006
	Schwenk, J.: Sicherheit und Kryptographie im Internet. Vieweg 2002
	Stinson, D. R.: Cryptography. CRC Press 2006

Künstliche Intelligenz (Aufbaukurs) (INMW-KIA)

Modulbezeichnung	Künstliche Intelligenz (Aufbaukurs)
Modulkürzel	INMW-KIA
Semester	1. oder 3. Semester des Masterstudienganges Informatik
Modul-	Prof. Dr. rer. nat. habil. Siegfried Schönherr
verantwortlicher	
Dozent	Prof. Dr. rer. nat. habil. Siegfried Schönherr
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	Wahlpflichtmodul im Masterstudiengang Medieninformatik (MIM)
	Wahlpflichtmodul im Masterstudiengang Angewandte Mathematik (AMM)
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 für Präsenzstudium
	120 h für Selbststudium und Projektbearbeitung
ECTS-Punkte	6
Voraussetzungen	klassische Prädikatenlogik 1. Stufe, Prolog
Lernziele /	Ziel: Vermittlung von Methoden der Wissensrepräsentation, der heuristischen
Kompetenzen	Suche und von Ansätzen nichtklassischer Logiken zur Modellierung
	intelligenten Verhaltens
	Kompetenzen: Aneignung praktischer Fähigkeiten und Fertigkeiten zur
	Wissensmodellierung; hierfür dient ein studienbegleitendes Praktikum.
	Insbesondere sollen die Studenten in die Lage versetzt werden, ein dem
	Problem angemessenes Modellierungsinstrumentarium auszuwählen.
Inhalt	1. Wissensrepräsentation
	2. Intelligente Suche
	3. Deduktionssysteme (insbes. Behandlung von Gleichungswissen)
	4. Nichtmonotones Schließen
	5. Unsicheres Wissen (Wahrscheinlichkeits- und Fuzzy-Logik)
	praktische Übungen mit dem Expertensystem-Tool EE
Prüfung	Prüfungsvorleistungen: Belege (Praktikumsaufgaben)
	Prüfung: Klausur (120 Minuten) oder mündliche Prüfung (ca. 30 Minuten)
Medienformen	Tafelbild, Bildschirm, Literatur
Literatur	Luger, G. F.: Einführung in die künstliche Intelligenz.
	Addison-Wesley 2002.
	Heinsohn, J., Socher-Ambrosius, R.: Wissensverarbeitung - eine
	Einführung. Spektrum, Akademischer Verlag 1999.
	Lunze, J.: Künstliche Intelligenz fuer Ingenieure. (Bände 1 und 2)
	Oldenbourg Verlag 1994 bzw. 1995.
	Winston H.P.: Artificial Intelligence. Addison-Wesley 1992.

Mathematische Modellierung (INMW-MAM)

Modulbezeichnung	Mathematische Modellierung
Modulkürzel	INMW-MAM
Semester	1., 2. oder 3. Semester des Masterstudienganges Informatik
Modul-	Prof. Dr. rer. nat. habil. Hans-Jürgen Dobner
verantwortlicher	Fior. Dr. Ter. Hat. Habit. Halls-Jurgen Dobiler
Dozent	Duet Du vou met hebit Home Tilyman Debney
	Prof. Dr. rer. nat. habil. Hans-Jürgen Dobner deutsch
Sprache	
Zuordnung zum Curriculum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	Wahlpflichtmodul im Masterstudiengang Medieninformatik (MIM) Masterstudiengang Angewandte Mathematik (AMM)
	Masterstudiengang Mechatronik
Lehrformen	Vorlesung 2 SWS / Übung 2 SWS
Leminormen	
Arbeitsaufwand	Projektbearbeitung z.T. im Rahmen der Übungen 60 h für Präsenzstudium
Albeitsaulwallu	
ECTS-Punkte	120 h für Selbststudium und Projektbearbeitung
	6 Analysis, Lineare Algebra, Differenzen und Differenzialgleichungen,
Voraussetzungen	Wahrscheinlichkeitstheorie, Statistik, Numerische Mathematik.
Lernziele /	Programmierkenntnisse, Umgang mit Computeralgebrasystemen.
Kompetenzen	Ziel: Mathematisches Modellieren umfasst den gesamten Problemlöseprozess von der Realsituation über die mathematische Formulierung bis zur Lösung,
Kompetenzen	Interpretation und Präsentation der Ergebnisse. Ziel ist die Vermittlung
	grundlegender Modellierungs-werkzeuge sowie die Vermittlung
	Mathematischer Modelle für häufig vorkommende Situationen.
	Fach- und methodische Kompetenzen:
	Mathematische Modellierung realer, i.A. nichtmathematischer
	Problemstellung sowie Anpassung existierender Modelle an geänderte
	Situationen. Teamarbeit und Kreativität. Mathematische Methoden werden
	zunehmend zur Lösung außermathematischer Fragestellungen eingesetzt,
	dabei kommt der Mathematischen Modellbildung eine Schlüsselrolle zu.
Inhalt	Der Modellierungsszklus
Imate	2. Dimensionsanalyse
	3. Modellieren mit Differenzialgleichungen
	4. Simulation
	5. Mathematische Modelle in der Wirtschaft.
Studien- und	Prüfungsvorleistungen: Projekte (Modellierungsaufgaben in Form kleinerer
Prüfungsleistungen	Projekte)
	Prüfung: mündlich (ca. 30 Minuten)
Medienformen	Tafelbild, Folien (Overhead), Projektarbeit, Begleitliteratur
Literatur	T. Sonar: Angewandte Mathematik, Modellbildung und Informatik.
	F. Giordano, M. Weir: A first Course in mathematical Modeling.
	D. Burghes, P. Galbraith, N. Price, A. Sherlock: Mathematical Modelling.
	N. Fowkes, J. Mahony: An Introduction to Mathematical Modelling.

Mikrocontroller-Anwendungen (INMW-MC)

Modulbezeichnung	Mikrocontroller-Anwendungen
Modulkürzel	INMW-MC
Semester	1. Semester im Masterstudiengang Informatik (INM)
Modul-	Prof. Dr. rer. nat. Klaus Bastian
verantwortlicher	
Dozent	Prof. Dr. rer. nat. Klaus Bastian
Sprache	deutsch
Zuordnung zum	Wahl-Pflichtmodul im Masterstudiengang Informatik,
Curriculum	Kompetenzbaustein E - Embedded Systems
	Weitere Studiengänge: keine
Lehrformen / SWS	Vorlesung und Praktikum / 4 SWS
Arbeitsaufwand	60 h für Präsenzstudium
	120 h für Selbststudium und eigenständige Projektarbeit
ECTS-Punkte	6
Voraussetzungen	Assemblerprogrammierung, C
Lernziele /	Ziel ist, die speziellen Anforderungen an eingebettete und verteilte Systeme
Kompetenzen	auf Basis von Mikrocontrollern zu verstehen, um diese im Entwurfsprozess
,	angemessen berücksichtigen und anwenden zu können. Die Studierenden
	können die Wechselwirkungen von Hardware und Software beurteilen und
	Anwendungen angemessen strukturieren.
	Das begleitende Praktikum dient der Realisierung eines Projekts auf einer
	Harewareplattform eigener Wahl und damit der praktischen Anwendung und
	Vertiefung der vermittelten Theorie.
Inhalt	1. Architekturen und Programmiermodelle
	2. Entwicklungswerkzeuge
	3. Systemkerne, Betriebssysteme, Echtzeit
	4. Sensoren und Aktoren
	5. Kommunikation
Studien- und	Prüfungsvorleistung: keine
Prüfungsleistungen	Prüfung: Projekt (Bearbeitungsdauer 6 Wochen)
Medienformen	Tafelbild, Beamer, Spezialhardware
Literatur	Sturm, M.: Mikrocontrollertechnik Am Beispiel der MSP 430-Familie.
	Fachbuchverlag Leipzig 2005
	Bräunl, T.: Embedded Robotics. Springer Verlag 2003
	Sridhar, T.: Designing Embedded Communications Software. CMP Books 2003

Multiprozessor-Systeme und -Programmierung (INMW-MPSP)

Modulbezeichnung	Multiprozessor-Systeme und -Programmierung
Modulkürzel	INMW-MPSP
Semester	1. oder 3. Semester des Masterstudienganges Informatik
Modul-	Prof. DrIng. Axel Schneider
verantwortlicher	
Dozent	Prof. DrIng. Axel Schneider
Sprache	deutsch
Zuordnung zum Curriculum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 für Präsenzstudium
	120 h für Selbststudium und Projektbearbeitung
ECTS-Punkte	6
Voraussetzungen	Rechnerarchitektur
Lernziele /	Ziel: Aneignung von Wissen über den Aufbau von MPS, deren
Kompetenzen	Einsatzmöglichkeiten sowie die Programmierung derartiger Systeme. Aneignung praktischer Fähigkeiten und Fertigkeiten zur Implementierung
	paralleler Algorithmen; hierfür dient ein studienbegleitendes Praktikum.
Inhalt	1. Grundlagen und Merkmale von MPS
	2. Taxonomie von Verbindungstopologien und Kriterien zu deren Bewertung 3. Speedup und Effizienz
	4. Hardwaremerkmale und Programmierumgebung des verwendeten Systems 5. Ausgewählte parallele Algorithmen
	Programmerstellung mit dem MPS MC-3
Prüfung	Prüfungsvorleistung: Belege, Projekte (Computerprogramme) Prüfung: mündliche Prüfung (einschl. Projektpräsentation, ca. 30 Minuten)
Medienformen	Tafelbild, Bildschirm, Literatur
Literatur	A. S. Tanenbaum, J. Goodman: Computerarchitektur. Pearson 2001. W. Huber: Paralleles Rechnen. Oldenbourg 1997.

Mustererkennung (INMW-ME)

Modulbezeichnung	Mustererkennung
Modulkürzel	INMW-ME
Semester	3. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. rer. nat. habil. Siegfried Schönherr
verantwortlicher	Tion. Dr. Ter. Hat. Habit. Siegiffed Schollien
Dozent	Prof. Dr. rer. nat. habil. Siegfried Schönherr
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	weitere Studiengänge:
Curriculum	Masterstudiengang Medieninformatik (MIM)
	Masterstudiengang Angewandte Mathematik (AMM)
Lehrformen	Masterstudiengang Maschinenbau (MBM)
Lenrrormen	Vorlesung 2 SWS / Übung 2 SWS
A.d 't C d	Projektbearbeitung z.T. im Rahmen der Übungen
Arbeitsaufwand	60 für Präsenzstudium
ECTC D. L.	120 h für Selbststudium und Projektbearbeitung
ECTS-Punkte	6
Voraussetzungen	Analysis, Algebra, Wahrscheinlichkeitsrechnung und Statistik
Lernziele /	Ziel: Vermittlung eines Überblicks über die wichtigsten Grundlagen, Modelle,
Kompetenzen	Methoden und Anwendungen, die z.B. in der Schriftzeichenerkennung, der
	Qualitätskontrolle und im Computersehen bestehen
	Fach- und methodische Kompetenzen:
	Aneignung praktischer Fähigkeiten und Fertigkeiten zur Lösung von
	Erkennungsaufgaben; hierfür dient ein studienbegleitendes Praktikum.
Inhalt	1. Zum Begriff Mustererkennung
	2. Mustervergleich
	3. Numerische Klassifikation
	4. Lernen von Klassifikatoren
	5. Merkmalsbewertung und Merkmalsauswahl
	6. Strukturelle Mustererkennung
	7. Texturen
	8. Biometrische Identifikation
	praktische Übungen mit dem Bildverarbeitungssystem DIAS
Studien- und	Prüfungsvorleistungen: Belege (Praktikumsaufgaben)
Prüfungsleistungen	Prüfung: Klausur (120 Minuten) oder mündliche Prüfung (ca. 30 Minuten)
Medienformen	Tafelbild, Literatur
Literatur	Behrens, M.; Roth, R. (Hrsg.): Biometrische Identifikation.
	Vieweg 2001.
	Haberäcker, P.: Praxis der digitalen Bildverarbeitung und
	Mustererkennung. Carl Hanser 1995.
	Schürmann, J.: Pattern Classification. John Wiley & Sons 1996.

Numerische Methoden (Aufbaukurs) (INMW-NMA)

Modulbezeichnung	Numerische Methoden (Aufbaukurs)
Modulkürzel	INMW-NMA
Semester	1. oder 3. Semester des Masterstudienganges Informatik
Modul-	Prof. Dr. rer. nat. habil. Bernd Engelmann
verantwortlicher	
Dozent	Prof. Dr. rer. nat. habil. Bernd Engelmann
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	weitere Studiengänge:
	Masterstudiengang Medieninformatik (MIM)
Lehrformen / SWS	Vorlesung 2 SWS, Übung 1 SWS, Praktikum 1 SWS
Arbeitsaufwand	60 für Präsenzstudium
	120 h für Selbststudium und Projektbearbeitung
ECTS-Punkte	6
Voraussetzungen	Numerische Mathematik, Grundkurs
Lernziele /	Ziele: Erweiterung von Grundkenntnissen auf dem Gebiet der Numerischen
Kompetenzen	Mathematik, insbesondere von Verfahren für Probleme der linearen Algebra
	und der Behandlung von Differenzialgleichungen.
	Fach- und methodische Kompetenzen:
	Aneignung praktischer Fähigkeiten und Fertigkeiten durch Programmierung
	und Test ausgewählter Verfahren mit MATLAB
Inhalt	1. Interpolation und Approximation
	2. Matrixeigenwertprobleme
	3. Numerische Integration und Ableitungsberechnung
	4. Gewöhnliche Differenzialgleichungsprobleme
	5. Iterative Lösung linearer Gleichungssysteme
Prüfung	Prüfungsvorleistungen: Belege (Praktikumsaufgaben)
	Prüfung: Klausur (120 Minuten) oder mündliche Prüfung (ca. 30 Minuten)
Medienformen	Tafelbild, Bildschirm, Literatur
Literatur	Meister, A.: Numerik linearer Gleichungssysteme. Vieweg 2005
	Plato, R.: Numerische Mathematik kompakt. Vieweg 2004
	Schwarz, H. R., Köckler, N.: Numerische Mathematik. Teubner 2004
	Stoer, J.: Einführung in die Numerische Mathematik I. Springer 2005. Stoer,
	J., Bulirsch, R.: Einführung in die Numerische Mathematik II. Springer
	2005.

Programmverifikation (INMW-PV)

Modulbezeichnung	Programmverifikation
Modulkürzel	INMW-PV
Semester	1. oder 3. Semester des Masterstudienganges Informatik
Modul-	Prof. Dr. rer. nat. Uwe Petermann
verantwortlicher	
Dozent	Prof. Dr. rer. nat. Uwe Petermann
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	weitere Studiengänge:
	Masterstudiengang Medieninformatik (MIM)
	Masterstudiengang Angewandte Mathematik (AMM)
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 h für Präsenzstudium
	120 h für Selbststudium und Projektbearbeitung
ECTS-Punkte	6
Voraussetzungen	Algorithmen und Datenstrukturen, Softwareentwicklung, klassische
	Prädikatenlogik 1. Stufe
Lernziele /	Ziel: Vermittlung von Methoden zur Spezifikation des Verhaltens von Software
Kompetenzen	und zum Nachweis der Korrektheit von Software bzgl. solcher Spezifikationen.
	Aneignung praktischer Fähigkeiten und Fertigkeiten zur Arbeit mit
	Spezifikations- und Verifikationswerkzeugen in einem studienbegleitenden
	Praktikum.
Inhalt	1. Prädikatenlogik mit Induktion als Sprache formaler Spezifikationen
	2. Formulieren und Nachweisen von Eigenschaften von Datenstrukturen und
	Programmen
	3. Strukturierung von Softwaresystemen
	praktische Übungen mit einem Verifikationssystem (z.B. KIV)
Prüfung	Prüfungsvorleistungen: Belege (Übungsaufgaben)
	Prüfung: Projekt (Bearbeitungszeit 6 Wochen)
Medienformen	Tafelbild, Projektion, Demonstration der Software, Literatur
Literatur	M. Balser, W. Reif, G. Schellhorn, K. Stenzel und A. Thums:
	A Pratcical Course on KIV, Universität Augsburg, 2003.
	Petermann, U.: Towards Dependable Development Tools for
	Embedded Systems - A Case Study in Software Verification. J. on
	Exp. And Theoretical Artificial Intelligence, 2000, Vol. 12, Nr. 4.
	Petermann, U.: Übungsbeispiele zur Vorlesung Programmverifikation

Robotik (INMW-ROB)

Modulbezeichnung	Robotik
Modulkürzel	INMW-ROB
Semester	2. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. rer. nat. Heinrich Krämer
verantwortlicher	
Dozent	Prof. Dr. rer. nat. Heinrich Krämer
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM),
Curriculum	
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 für Präsenzstudium
	120 h für Selbststudium/Projekt
ECTS-Punkte	6
Voraussetzungen	keine
Lernziele /	Vermittlung des Aufbaus und der Arbeitsweise von Industrierobotern.
Kompetenzen	Die Student(inn)en beherrschen konzeptuell den Aufbau einer Steuerung und
	Regelung für Industrieroboter. Die theoretischen Ansätze werden durch ein
	Projekt vertieft.
Inhalt	Charakterisierung von Industrierobotern
	Kinematik
	Koordinatentransformationen
	Denavit-Hartenberg-Verfahren
	Kinetik
	Lagrange-Euler-Verfahren
	Newton-Euler-Verfahren
	Bahnplanung
	Steuerung von Industrierobotern
	Programmierung von Industrierobotern
	Sensoren/Aktoren von Industrierobotern
Studien- und	Prüfung: Projekt (Bearbeitungszeit 4 Wochen), Kolloquium (zum Projekt, 30
Prüfungsleistungen	Minuten)
Medienformen	Beamer, Tafelanschrieb, Literatur
Literatur	Weber, Wolfgang: Industrieroboter
	Fachbuchverlag Leipzig, 2002
	Kreutzer, E. J., Lugtenburg JB., Meißner HG., Trunkenbrodt A.:
	Industriroboter, Springer-Verlag 1994
	Hesse, Stefan: Handhabungsmaschinen
	Vogel Buchverlag, 1993
	Pfeiffer F., Reithmeier E.: Roboterdynamik
	Teubnerverlag, 1987

Smartcard-Programmierung (INMW-SC)

Modulbezeichnung Modulkürzel	Smartcard-Programmierung INMW-SC
Semester	2. Semester des Masterstudienganges Informatik
Modul-	Prof. Dr. rer. nat. Uwe Petermann
verantwortlicher	
Dozent	Prof. Dr. rer. nat. Uwe Petermann
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 h für Präsenzstudium
	120 h für Selbststudium und Projektbearbeitung
ECTS-Punkte	6
Voraussetzungen	Algorithmen und Datenstrukturen, Softwareentwicklung, Java
Lernziele /	Ziel: Vermittlung von Methoden zur Entwicklung von Anwendungen, die auf
Kompetenzen	der Benutzung von Smartcards aufbauen.
	Aneignung praktischer Fähigkeiten und Fertigkeiten zur Entwicklung sowohl
	der On-Card- als auch der Off-Card-Anteile von Smartcard-basierten
	Anwendungen in einem studienbegleitenden Praktikum.
Inhalt	1. Aufbau, Funktionsweise und Sicherheitsmerkmale von Smartcards
	2. Besonderheiten der auf Java-Smartcards verfügbaren Untermenge der
	Programmiersprache Java.
	3. Software für die Entwicklung von Smartcard-basierte Anwendungen (z.B.
	Open Card Framework)
	praktische Arbeit mit einem Entwicklungssystem für Smartcard-basierte
	Anwendungen, Entwicklung einer Lösung in Gruppenarbeit.
Prüfung	Prüfungsvorleistungen: Belege (Übungsaufgaben), Referat (Vortrag)
	Prüfung: Projekt (Bearbeitungszeit 6 Wochen)
Medienformen	Tafelbild, Projektion, Demonstration der Hard- und Software, Literatur
Literatur	U. Hansmann, M. S. Nicklous, T. Schäck und F. Seliger:
	Smart Card Application Development Using Java. Springer-Verlag Berlin
	Heidelberg 2000.
	jeweils aktuelle Publikationen aus Forschung und Entwicklung
	Petermann, U.: Skript u. Beispiele zur Vorlesung SmartCards, 2005.

Symbolisches Rechnen (INMW-SR)

Modulbezeichnung	Symbolisches Rechnen
Modulkürzel	INMW-SR
Semester	1., 2. oder 3. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. rer. nat. Johannes Waldmann
verantwortlicher	
Dozent	Prof. Dr. rer. nat. Johannes Waldmann
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 h für Präsenzstudium
	120 h für Selbststudium
ECTS-Punkte	6
Voraussetzungen	Mathematik, Programmierung
Lernziele /	Wesentliche Modelle, Methoden und Werkzeuge zum Symbolischen Rechnen
Kompetenzen	kennen- und beherrschen lernen, orientiert auf ingenieurmäßige
	Anwendungen in Mathematik und Informatik
Inhalt	1. Rechnen mit großen und genauen Zahlen
	2. Rechnen mit Polynomen und Funktions-Ausdrücken
	(klassische Comoputeralgebra, z.B. Differentiation, Summation,
	Integration)
	3. Rechnen mit Figuren
	(geometrische Konstruktionen und Beweise)
	4. Rechnen mit Programmen
	(Programmtransformationen, Refactoring)
	5. Rechnen mit logischen Formeln
	(automatische Beweiser und Beweis-Überprüfer)
Studien- und	Prüfungsvorleistung: keine
Prüfungsleistungen	Prüfung: Klausur (120 Minuten) oder mündliche Prüfung (ca. 30 Minuten)
Medienformen	Beamer, Tafel, Zusatzinformationen und Übungsaufgaben teilweise online
Literatur	Köpf: Computeralgebra, Springer, 2006.
	Bertot und Casteran: Interactive Theorem Proving and Program Development,
	Springer, 2004.

Test integrierter Schaltungen (INMW-TIS)

Modulbezeichnung Modulkürzel	Test integrierter Schaltungen INMW-TIS
Semester	3. Semester des Masterstudienganges Informatik (INM)
Modul-	Prof. Dr. rer. nat. Heinrich Krämer
verantwortlicher	
Dozent	Prof. Dr. rer. nat. Heinrich Krämer
Sprache	deutsch
Zuordnung zum Curriculum	Wahlpflichtmodul im Masterstudiengang Informatik (INM),
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 für Präsenzstudium
	120 h für Selbststudium
ECTS-Punkte	6
Voraussetzungen	Hardware-Entwurfstechniken, ASIC-Entwurf
Lernziele /	Implikationen durch die Notwendigkeit eines Tests auf den Entwurf einer
Kompetenzen	Schaltung, Notwendigkeit eines Design for Testability.
	Vorstellung verschiedener Ansätze zum Selbsttest.
	Hierdurch werden die Studenten in die Lage versetzt, ein geeignetes
	Testkonzept für eine Schaltung zu entwickeln und beim Entwurf zu
	berücksichtigen.
Inhalt	Testarten, Ursache von Herstellungsfehlern, Fehlermodelle
	Deterministische Testmustergenerierung
	Test mit Zufallsmustern
	Scan-Techniken, JTAG-Boundary-Scan
	Selbsttest
	Iddq-Test
Studien- und	Prüfungsvorleistung: keine
Prüfungsleistungen	Prüfung: mündlich (ca. 30 Minuten)
Medienformen	Beamer, Tafelanschrieb, Literatur
Literatur	Wunderlich HJ.: Hochintegrierte Schaltungen: Prüfgerechter Entwurf und
	Test.
	Springer-Verlag, 1991
	Rajusuman R.: Iddq-Testing for CMOS-VLSI. Artech House, 1995

Wahrscheinlichkeitsrechnung und Statistik (INMW-WRS)

Modulbezeichnung	Wahrscheinlichkeitsrechnung und Statistik
Modulkürzel	INMW-WRS
Semester	vorzugsweise 1. Semester des Masterstudienganges Informatik
Modul-	Prof. Dr. rer. nat. habil. Siegfried Schönherr
verantwortlicher	
Dozent	Prof. Dr. rer. nat. habil. Siegfried Schönherr
Sprache	deutsch
Zuordnung zum	Wahlpflichtmodul im Masterstudiengang Informatik (INM)
Curriculum	Wahlpflichtmodul im Masterstudiengang Medieninformatik (MIM)
Lehrformen / SWS	Vorlesung 2 SWS, Übung 2 SWS
Arbeitsaufwand	60 für Präsenzstudium
	120 h für Selbststudium und Projektbearbeitung
ECTS-Punkte	6
Voraussetzungen	Algebra- und Analysis-Kenntnisse,
	wünschenswert: Grundkenntnisse der Wahrscheinlichkeitsrechnung (WR)
Lernziele /	Ziele:
Kompetenzen	- Verständnis für die formale Behandlung zufälliger Phänomene
	- Verständnis für den Zusammenhang von Zufall und Informiertheit
	- Vermittlung wichtiger Resultate und Methoden der WR
	- Verständnis des Zusammenhangs zwischen WR und Statistik
	- exemplarische Vermittlung wichtiger Methoden der Statistik
	- Die Studenten sollen nach dem Kurs auf dem Gebiet der WR und Statistik
	arbeitsfähig und in der Lage sein, sich gezielt weitere Kenntnisse
	selbstständig anzueignen.
Inhalt	0. Das Stieltjes-Integral (analytische Grundlagen)
	1. Wiederholung/Einführung wichtiger Grundbegriffe
	2. Zufallsgrößen, Zufallsvektoren, Verteilungen
	3. Gesetze der großen Zahlen
	4. Stichproben
	5. Statistische Schätzungen
	6. Statistische Tests
	praktische Übungen
Prüfung	Prüfungsvorleistungen: Belege (Praktikumsaufgaben)
	Prüfung: Klausur (120 Minuten) oder mündliche Prüfung (ca. 30 Minuten)
Medienformen	Tafelbild, Bildschirm, Literatur
Literatur	Hübner, G.: Stochastik - eine anwendungsorientierte Einführung für
	Informatiker, Ingenieure und Mathematiker. Vieweg. 2003.
	Müller, P.H.: Wahrscheinlichkeitsrechnung und Mathematische Statistik,
	Lexikon der Stochastik. Akademie-Verlag Berlin, 1991.
	Stoyan, D.: Stochastik für Ingenieure und Naturwissenschaftler. Akademie-
	Verlag Berlin, 1993.